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Continuum approach to car-following models
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A continuum version of the car-following Bando model is developed using a series expansion of the
headway in terms of the density. This continuum model obeys the same stability criterion as its discrete
counterpart. To compare both models we show that traveling wave solutions of the Bando model are very
similar to those of the continuum model in the limit of small changes of headway. As the change of headway
across the wave increases the solutions gradually diverge. Our transformation relating headway to density
enables predictions of the global impact and characteristics of any car-following model using the analogous
continuum model. In contrast, we show that the conventional continuum models which account for effects of
pressure and dispersion predict behavior which is distinct from the global behavior of discrete models.

PACS number~s!: 89.40.1k, 45.70.Vn, 02.60.Cb
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I. INTRODUCTION

The purpose of this work is to develop a systema
method for relating car-following and continuum models
road traffic. The relation between these models is of inte
since they provide different pictures of the flow, whic
should converge in the appropriate limit. Continuum mod
give an overview of the global traffic flow, which is impo
tant for developing insight into traffic quantities such
throughput, density distributions, or the onset of jams, wi
out detailed regard to the properties of each car. They
illustrate the effects of speed control systems along the r
and allow for analytical calculations. Continuum models d
fer from car-following models with regard to carrying o
simulations. With continuum models one has to deal w
two coupled partial differential equations instead of a f
hundred or even thousands of ordinary differential equati
in the latter case.

Car-following models represent the only class of mod
that describes each vehicle in a deterministic manner inc
ing the response to local variables such as speed, head
and change of headway. Therefore they seem to be of g
importance with regard to autonomous cruise control s
tems ~ACCS!, which should stabilize the flow as well a
maximize the throughput. In this paper we follow the Ban
model @1# of road traffic, in which the acceleration of eve
car is determined by its velocityvn and a desired spee
V(bn) depending on the headwaybn to the car in front

v̇n5a@VB~bn!2vn#. ~1!

VB(bn)5tanh(bn22)2tanh(22) is called the optimal veloc
ity ~OV! function anda is the driver’s sensitivity, which
equals the inverse of the reaction time, sayT. This model is
able to reproduce various features of road traffic and is
subject of much current research@2–4#. By developing a
formal asymptotic procedure we derive the continuum
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proximation of the car following model, which is valid whe
the spacing between cars is small relative to the length s
of changes in speed and headway. We then compare
with the continuum model of Kerner and Konha¨user@5# pro-
posed in the literature.

Continuum models have become progressively more c
plex incorporating effects of inertia and dispersion. Usua
one has to deal with two coupled differential equations
terms of the densityr and the velocityv of the cars in space
and time. Besides the equation for the conservation of c
~continuity equation!

r t1~vr!x50 ~2!

the system evolves according to a dynamic equation, wh
describes the acceleration of cars depending on some
traffic quantities. A typical model is the Kerner-Konha¨user
model

v t1vvx5
VKK~r!2v

t
2c0

2 rx

r
1m

vxx

r
~3!

with an optimal velocity functionVKK(r). The coefficients
c0

2 of the ‘‘pressure’’ term andm of the ‘‘viscosity’’ ~disper-
sive! term, respectively, are considered to be constant. T
model is able to describe the formation of instabilities a
traffic jams. In discussions@6# of the derivation of the higher
order terms, it appears that the diffusion term was origina
introduced as a means of stopping steepening waves form
discontinuous shocks. Nagel@7# explained the diffusion term
as an averaging effect caused by implicit random fluctuati
in r and v. It has been argued that these noise terms
important, since they can have a profound effect on soluti
of certain PDE’s. For instance, Burger’s equation

ut1uux5luxx ~4!

has well-known travelingN-wave solutions which cease t
exist if Gaussian noise is added to the right-hand side. H
rather than these heuristically motivated continuum mod
we aim to derive an asymptotic equation analogous to Eq.~3!
from the car-following model. We thereby establish that su
1056 ©2000 The American Physical Society
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PRE 61 1057CONTINUUM APPROACH TO CAR-FOLLOWING MODELS
diffusive behavior is an implicit part of the car-followin
model. In the case of a homogeneous, stationary flow
time and space derivatives vanish, and for the car-follow
model we then obtain the relation between speedv0 and
headwayb0

v05VB~b0!, ~5!

while from the continuum model we have

v05VKK~r0!. ~6!

For such uniform flow conditions, the density is simp
given by the inverse of the headway

r51/b, ~7!

and one can compare both types of model by drawin
fundamental diagramthat describes the dependence of t
flow q0 ~throughput! on the headway~car-following model!

q0~b0!5
v0

b0
5

VB~b0!

b0
~8!

⇒q0~r0!5VB~1/r0!r0 ~9!

or density~continuum model!

q0~r0!5VKK~r0!r0 . ~10!

In nonhomogeneous, nonstationary situations the
following and continuum models can only be compared
stability analysis and numerical simulations. It is hard to s
which terms or effects are responsible for the difference
the simulations. Here we show that the relation betwe
headway and density is of great importance. When there
long range fluctuations in the headway or the density al
the road, the usual definition of the density in terms of
headway~7! is only an approximation. In Sec. II we intro
duce a more accurate method to relate these variables.

II. DERIVATION OF THE CONTINUUM MODEL

The difficulty of relating car-following and continuum
models of road traffic is in part a result of the fact that t
first is based on the headway and the latter on the veh
density. It is important to relate these two quantities c
rectly. In the literature the densityr is usually defined as the
inverse of headway~7!. There is a problem with this defini
tion. For instance, suppose we have a set of cars positio
at x51,2,4,8, . . . . The car atpositionx has headwayb5x.
Using formula~7!, we obtainr51/x, which is extended into
continuum domain by permittingx to take any positive, rea
value. According to this, the number of cars on the op
interval ~1,y! is logey. However the actual answer is log2y
and so we are consistently a factor of loge2 wrong.

We deduce that for nonhomogeneous flow situations
cannot transform the car-following model simply using re
tion ~7!. We need a consistent way to set up a map

$xi%°@r:R°R#, ~11!

where the set$xi% represents the positions of the vehicles
a given instant in time, andr(x) is the associated densit
ll
g
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function from which we should be able to find the positio
of the vehicles. One approach is to require that

E
xi

xi 11
r~x!dx51 ~12!

for all i. Thus in addition to our density function, we requi
the position of car 1. Given only the condition~12!, map~11!
is not unique, but its inverse is. However, it is the inver
map that we require in constructing a continuum equation
motion from a car-following law. We use the definition o
headwayb5xi 112xi to arrive at an equation involving th
continuum variabler by extending Eq.~12! to all points
along the road

E
x

x1b(x,t)

r~x8,t !dx85E
0

b(x,t)

r~x1y,t !dy[1. ~13!

Expanding the second integral in powers ofy, we integrate to
obtain the asymptotic series@8#

br1
1

2!
b2rx1

1

3!
b3rxx1•••51. ~14!

The first term corresponds to the usual definition of the d
sity ~7!. We expand the series to this order for two reaso
First, we would like to obtain a continuum model that
capable of describing some characteristic traffic parame
mentioned by Kerner and Konha¨user@5#. They showed that a
dispersive term has to be incorporated to do so. Seco
these higher order terms are needed to maintain the s
stability criterion for the continuum model as for the ca
following model, as we show in Sec. III.

It is assumed that each term is of smaller magnitude t
the one preceding it. This assumption is at the core of c
tinuum approximations of many kinds, and can be summ
rized by condition

eL5
Lx

L
!1 ~15!

for all scalar quantitiesL associated with traffic. It amount
to saying that changes in the flow occur over a length sc
of many vehicles. However, even in this case the continu
approach is not applicable to sharp fronts.

If we consider the cubic term to be much smaller than
linear and quadratic term, we can first solve the quadr
equation forb. We obtain

b'
1

r
2

rx

2r3
. ~16!

Regarding the cubic term as a perturbation, we expandb in a
perturbation series and approximate the solution as

b;
1

r
2

rx

2r3
2

rxx

6r4
1

rx
2

2r5
1•••. ~17!

The first term represents the classic transformation for re
ing the headway and the density. The second term is sim
to a pressure termin gas kinetics and acts to destabilize t
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1058 PRE 61PETER BERG, ANTHONY MASON, AND ANDREW WOODS
traffic flow. If we only retain this term, then the continuu
model is always unstable unlike real traffic flow. The disp
sive termrxx smoothes variations in traffic density and ha
stabilizing effect on traffic flow, which counteracts the pre
sure term. We therefore retain terms up to this order.

Equation~17! can then be substituted into car-followin
models to yield equations forr instead ofb.

So far we have established a link between the continu
density and the headway. The other quantity relevant to b
continuum and car-following models is the speedv. In order
to link the two models completely, we need to establish t
now v is consistent with the quantity representing the sp
of each vehicle in the car-following models.

Taking a total time derivative of each side of Eq.~13!, we
obtain

E
x

x1b

r t~y,t !dy1~xt1bt!r~x1b,t !2xtr~x,t ! ~18!

5E
x

x1b

r t~y,t !dy1v~x1b,t !r~x1b,t !2v~x,t !r~x,t !

~19!

5E
x

x1b

@r t~y,t !1~r~y,t !v~y,t !!y#dy ~20!

50. ~21!

Hence the conservation equation

r t1~rv !x50 ~22!

guarantees that the integral of density along the road f
any vehicle to the vehicle it is following is 1, so in this sens
the definition of velocityv is consistent.

Applying our analysis to the second-order model
Bandoet al. @1# in Eq. ~1!, we obtain the expression for th
conservation of cars~22!, coupled with the approximation o
the car-following model

v t1vvx5a@V̄~r!2v#1aV̄8~r!F rx

2r
1

rxx

6r2
2

rx
2

2r3G .

~23!

Here we have set

V̄~r!5VB~1/r!, ~24!

0,
]VB~b!

]b
ub51/r52r2

]V̄~r!

]r
52r2V̄8~r!. ~25!

Equation~23! is analogous to the Kerner-Konha¨user model
~3!. However, an important difference between that mo
and the new model~23! lies in the coefficients of the highe
order terms. In the Kerner-Konha¨user model the coefficient
are assumed to be constant, while expression~23! reveals
that they actually depend onr. c0

2 is now analogous to the

term 2@aV̄8(r)/2#. By comparison with the discrete Band
model numerical simulations show that the dependence
these coefficients on the densityr is necessary to match th
-

-

m
th

t
d

m
,

f

l

of

length scale and qualitative behavior of shock wave soluti
~Sec. V!. The accuracy increases with further terms of t
asymptotic series~17!.

Nagel @7# argues that the diffusion term can be regard
as stochasticity added as a high-frequency correction to d
sity, which is supposed to be slowly varying in space a
time. However, our analysis reveals that the transforma
from a car-following to a continuum model also produces
diffusive or smoothing effect, without the need to introdu
any stochasticity.

III. STABILITY ANALYSIS

Before proceeding with numerical calculations, we fi
show that the continuum version of the Bando model~22!,
~23! obeys the same stability criterion as its discrete coun
part. Bandoet al. @1# proved that an initially homogeneou
flow is unstable, if the relation

2VB8 ~b0!

a
.1 ~26!

between the driver’s sensitivitya and the derivative of the
OV function VB8 at the given value ofr051/b0 is satisfied.
The analogous criterion for the continuum model may
found by linearizing the model

r t1~rv !x50, ~27!

v t1vvx5a@V̄~r!2v#1aV̄8~r!F rx

2r
1

rxx

6r2
2

rx
2

2r3G
~28!

around some initial valuesr0 andv05V̄(r0)

r5r01 r̂, ~29!

v5v01 v̂. ~30!

This leads to the perturbation equations

r̂ t1r0v̂x1v0r̂x50, ~31!

v̂ t1v0v̂x5a@V̄8~r0!r̂2 v̂#1aV̄8~r0!F r̂x

2r0
1

r̂xx

6r0
2G .

~32!

We now calculate the eigenvaluesv(k) of a harmonic dis-
turbance

fW~x,t !5S r̂~x,t !

v̂~x,t !
D 5S r̂0

v̂0
D exp$ i @kx2v~k!t#%, ~33!

so that we can rewrite the equations in the form
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S i ~kv02v! ikr0

2aV̄82
iaV̄8k

2r0
1

aV̄8k2

6r0
2

i ~kv02v!1aD
3S r̂0

v̂0
D exp$ i @kx2v~k!t#%50. ~34!

This equation has nontrivial solutions if the determinant v
ishes

U i ~kv02v! ikr0

2aV̄82
iaV̄8k

2r0
1

aV̄8k2

6r0
2

i ~kv02v!1aU50. ~35!

As long as the imaginary part ofv is negative, the system i
stable. Solutions have the form

v1,2~k!5kv02 i
a

2

3F16A11
2V̄8

a S k22 i2r0k1
i

3r0
k3D G ,

~36!
s
a

r-
iti
io
-

and by defining

V~k!ªReF11
2V̄8

a S k22 i2r0k1
i

3r0
k3D G1/2

~37!

the criterion is equivalent touV(k)u,1. By writing

uV~k!u5F S 11
2V̄8

a
k2D 2

1S 2
4V̄8r0

a
k

1
2V̄8

3ar0
k3D 2G1/4

ucos~f/2!u ~38!

5F S 11
2V̄8

a
k2D 2

1S 2
4V̄8r0

a
k

1
2V̄8

3ar0
k3D 2G1/4A11cosf

A2
, ~39!

where

f5argF11
2V̄8

a S k22 i2r0k1
i

3r0
k3D G , ~40!

it may be seen that the condition Im(v),0 is equivalent to
F S 11
2V̄8

a
k2D 2

1S 2
4V̄8r0

a
k1

2V̄8

3ar0
k3D 2G1/4

1

A2A11
11~2V̂8/a!k2

F S 11
2V̄8

a
k2D 2

1S 2
4V̄8r0

a
k1

2V̄8

3ar0
k3D 2G1/2,1. ~41!
In order to solve this inequality, we restrictk to be non-
negative, sinceuV(k)u is symmetric. SolvinguV(k)u51
leads to three solutions

k050, k65A6r0
26

3ar0

V̄8
A2

2V̄8

a
. ~42!

Recall thatV̄8,0 from Eq.~25!. k2 is always real, wherea
k1 might be either real or complex. Since we know th
uk1u,k2 , V(0)51 and

V~k! →
k→`

2`, ~43!

we can deduce from the continuity ofV(k) that V(k2)5
21. So fork.k2 the model is unstable, but since this co
responds to disturbances which are smaller than the in
headway, we do not take this case into further considerat
However, ifk1 is real, there is a region 0,k,k1 of insta-
bility V(k).1 with respect to long wavelengths. Ifk1¹R,
which means

6r0
21

3ar0

V̄8
A2

2V̄8

a
,0, ~44!
t

al
n.

the system is stable. TakingVB852r0
2V̄8 into account, this

reduces to

a

2VB8
.1, ~45!

which is exactly the stability criterion found by Bandoet al.
@cf. Eq. ~26!#. This model is unstable in a regime 0,rc1

B

,r,rc2

B such that

a

2 VB8 ~1/r!
,1. ~46!

A stability analysis for the Kerner-Konha¨user model leads to
a criterion similar to Eq.~38!. Now the system is stable, if

uVKK~k!u5UReF11
i4r0aVKK8 k24ro

2c0
2k2

~ar01mk2!2 G 1/2U,1

~47!

is satisfied. Taking the limits

k→0:uV~k!KKu→12
2c0

2

a2
k2→12 , ~48!



n
er
n

ls

m
e
.

th

o
-

the
g

an
di-
ins
l-
of

is

y a

lu-
nd
to-

the
his

p-
be

ing

1060 PRE 61PETER BERG, ANTHONY MASON, AND ANDREW WOODS
k→`:uV~k!KKu→A12
4r0

2c0
2

mk2
→12 . ~49!

This shows that the model is stable for any initial valuer0 of
the density and arbitrary sensitivitya51/T with respect to
short and long range disturbances unlike the continuum a
log of the Bando model. However, for the set of paramet
chosen@see Eqs.~79!–~85!#, the model is unstable in a
intermediate range 0,rc1

KK,r,rc2

KK in an analogous way to

the Bando model butrc1

KKÞrc1

B andrc2

KKÞrc2

B . This explains

the basic difference between these two continuum mode

IV. COMPARISON OF TRAVELING WAVE SOLUTIONS

To test the accuracy of our model, we compare so
traveling wave solutions of the car-following Bando mod
in the stable regime@9# with those of the continuum version

The traveling wave of speedc has the form

v~x,t !5v~x2ct!5v~z!, ~50!

r~x,t !5r~x2ct!5r~z!, ~51!

z5x2ct, ~52!

where the equation for the conservation of cars~22! yields
the relation

r~v2c!5q0 . ~53!

q0 is some integration constant that is determined by
boundary conditionsr25r(x→2`), r15r(x→`), v2

5v(x→2`), andv15v(x→`), respectively, as follows:

q05r1~v12c! ~54!

5r1@V̄~r1!2c# ~55!

5r2~v22c! ~56!

5r2@V̄~r2!2c#. ~57!

Equations~54!–~57! determine that the wave speedc has
value

c5
r1V̄~r1!2r2V̄~r2!

r12r2
~58!

and so both the variablesq0 andc are uniquely determined
by the values ofr at 6`. If we substitute these relations int
our model equation~23! and make the following transforma
tion

u~z!5v~z!2c, ~59!

we obtain the equation for the speed of carsu in the frame
moving with the wave in the form

uuz5a@V̄~q0 /u!2u2c#2aV̄8~q0 /u!S uz

2u
1

uzz

6q0
1

2uz
2

3q0uD .

~60!
a-
s

.

e
l

e

Throughout the remaining parts we assumea52.0 in order
to be in the stable regime. The wave that develops from
initial condition shown in Fig. 1 is shown in Fig. 2 evolvin
towards the wave solution of the continuum model~60!. As
the initial jump in headway increases, the wave develops
oscillatory tail. Because of the increasing of headway gra
ents, the solution governed by the continuum model beg
to diverge from its discrete car-following counterpart, a
though the length scale and the oscillatory characteristic
the wave are still described properly~Fig. 3!.

If the downstream headway in the car-following model
decreased below some critical valuer15rbw , an unusual
type of nonlinear wave solution develops@9#, @10#. It consists
of two traveling waves of different speed, separated b
growing region of congested traffic of densityrgap . We may
call this a Bando wave. Givenrgap , which can only be de-
termined numerically, we can calculate traveling wave so
tions in the analogous continuum model for both up- a
downstream propagating shocks. They may be matched
gether to describe the unusual wave type, if one knows
long-time behavior of the gapwidth. We assume that in t
limit the gap will increase at a constant ratevgap which can
be calculated from the continuum model according to

vgap5cdown2cup . ~61!

Here cdown and cup represent the downstream and the u
stream wave velocity, respectively. Both parameters can
determined following Eq.~58!

FIG. 1. Initial change of headway in the Bando model,t50.

FIG. 2. The shock wave profile of the Bando model approach
the traveling wave solution of the continuum model.
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cup,down5
r6V̄~r6!2rgapV̄~rgap!

r62rgap
. ~62!

The gapwidthdgap then has the long-time form

dgap5vgap~ t2t init ial !, t@t init ial , ~63!

wheret init ial is the time offset associated with the develo
ment of the waves. Once more it can only be estimated
numerical solutions of the car-following model and compa
son ~Figs. 4 and 5! suggests thatt init ial '2189.78. For the
set of parameters

r253.0, ~64!

r151.7, ~65!

we find from the numerics the gap density to be

rgap'1.303 ~66!

and the gap speed from the continuum model

vgap520.65972~26858!50.0261. ~67!

This corresponds very well with the slope of the curve
Fig. 5. We are now able to compare the Bando wave and
two individual traveling wave solutions of the continuu
model in the same graph~Fig. 6!, which shows a very good

FIG. 3. The change of headway aftert51000 for an initial jump
from b253.0 tob151.8.

FIG. 4. The forming of a Bando wave for initial valuesb2

53.0 andb151.7.
-
y

-

e

agreement. We conclude that our continuum model is a v
good approximation to the discrete car-following Ban
model ~1!.

V. COMPARISON WITH THE KERNER-KONHA ¨ USER
MODEL

Next we show that the transformation~17! is crucial in
order to derive a continuum model that is qualitatively ana
gous to the underlying car-following model. To this end w
compare predictions of our model with those of a previou
published continuum model and the corresponding c
following model. Herrmann and Kerner@11# investigated the
similarities between their continuum model and a c
following model that is also based on a relaxation term. Th
considered in greater detail cluster effects in both models
examining traffic jams in a Bando type model

v̇n5
1

T
@VB~bn!2vn# ~68!

and comparing the predictions to their own continuum mo

r t1~rv !x50, ~69!

v t1vvx5
1

T
@Vkk~r!2v#2c0

2 rx

r
1m

vxx

r
. ~70!

In both cases they chose the same OV function

FIG. 5. Determination of the time offsett init ial of the Bando
wave .

FIG. 6. Comparison of the Bando wave and two individual tra
eling wave solutions of the continuum model~60!.
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Vkk~r!5v0F S 11exp
~r2r i !/ r̂

s
D 21

2dG ~71!

with

d5S 11exp
12r i / r̂

s
D 21

~72!

and

VB~b!5Vkk~1/b!. ~73!

The top speed of cars is defined asv fªVkk(0). Theparam-
eters of the car-following model are fitted until both mode
show the same wide stationary jams in their simulatio
moving on a circular road. This gives the following param
eters for the discrete model:

T50.985 s, ~74!

r̂5180 vehicles/km, ~75!

v f5100.8 km/h, ~76!

r i536.5 vehicles/km, ~77!

s50.02875, ~78!

whereas the parameters of the continuum model are base
real traffic data:

T55 s, ~79!

c0539.88 km/h, ~80!

m5210 vehicles km/h, ~81!

r̂5180 vehicles/km, ~82!

v f5100.8 km/h, ~83!

r i542.7 vehicles/km, ~84!

s50.04. ~85!

For unstable flow these two models may seem to describe
same qualitative type of moving structures such as de
sparse regions. However, if we examine the stable regi
we find that these models are actually not equivalent.
comparison Fig. 7 shows how the Kerner-Konha¨user model
cannot match the length scale of a jump in headway o
traveling wave predicted by the car-following model~68!.
Even for the same driver reaction timeT50.985 s the mode
predicts a much more extensive region of adjustment in o
for the headway to decrease tob540 m.

The calculations are carried out by substituting Eq.~53!
into Eq.~70! to obtain the traveling wave equation analogo
to Eq. ~60!

uuz5
1

T
@Vkk~q0 /u!2u2c#1c0

2uz

u
1

m

q0
uuzz. ~86!
s
-

on

he
e-
e,
r

a

er

s

We now compare solutions of this ODE and the c
following model ~68! to those of our continuum model~60!
with an OV function as in Eq.~73! and parameters as in Eq
~74!–~78!. Our model predicts oscillatory behavior in con
trast to the car-following model, but significantly it predic
the same length scale~Fig. 8!. This arises from the depen
dency of the coefficients of the higher order terms on eit
the density~23! or the velocity~60!.

This dependency does not occur in conventional c
tinuum models, but it could well be an intrinsic feature of
delay differential equation as recently proposed by Naga
@12#, @13#. In order to derive a modified Kortweg–de Vrie
equation for the jamming transition in a continuum model
used a simplified version of the Kerner-Konha¨user model

~rv ! t5ar0V„r~x11!…2arv ~87!

with the OV functionV(r)5VB(1/r) of the Bando model
~1!. He simplifies it in the sense that he drops the press
and the dispersive terms of the original model. On the ot
hand, the anticipation is now incorporated in a nonlocal te
r(x11). In this model that is dimensionless in space t
average headwaybav is supposed to be of order one (bav
51). The idea is that a driver adjusts his velocity accord
to the observed headwayb(x)51/r(x11). Even though this
is not the correct relation between headway and density
shown above we proceed to derive the corresponding o

FIG. 7. Comparison of traveling waves in the Bando mod
~68!, the Kerner-Konha¨user~K.-K.! model~86!, and the model~60!
in the stable region for the same optimal velocity function.

FIG. 8. Comparison of traveling waves in the Bando model~68!
and the analogous continuum model~60!.
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nary differential equation for the traveling waves. Nagat
couples the dynamic equation to a continuity equation of
form

r t1r0~rv !x50. ~88!

In case of a traveling wave the transformation~50!–~52! en-
ables integration of Eq.~88! to give

r~r0v2c!5q0 . ~89!

Inserting this relation into Eq.~87! yields

wwz5
ar0

2

q0c2
VS q0

w~z11! Dw32
a

c2
w32

a

c
w2 ~90!

with

w5r0v2c. ~91!

Since this is a delay differential equation it is not straightf
ward to compare it to our model~60!. In general a delay
differential equation cannot be solved by a Taylor expans
and its truncation after a certain amount of terms. Nevert
less in order to have similar equations the first terms of
Taylor expansion should be similar. If we keep terms up
first order inV8

VS q0

w~z11! D;VS q0

w~z! D2q0V8S q0

w~z! D wz~z!

w~z!2

2
1

2
q0V8S q0

w~z! D Fwzz~z!

w~z!2
22

wz
2~z!

w~z!3G
~92!

we obtain a corresponding second order model

wwz5
ar0

2

q0c2 FVS q0

w D2q0V8S q0

w D S wz

w2
1

wzz

2w2
2

wz
2

w3D Gw3

2
a

c2
w32

a

c
w2 ~93!

that differs not only by its expansion terms but also by
nonlinear termsaw3/c2 andaw2/c. Hence the class of solu
tions differs also from our model. Nevertheless the exp
sion ~93! shows that a dependency of the coefficients of
pressure and dispersive terms on the density is an intri
feature of this model. But it is not an analogous model of
Bando model.

VI. TRAVELING WAVES IN THE UNSTABLE REGION

The correspondence of the traveling wave solutions
both the continuum and the car-following model cannot
generalized to all values of the sensitivity parametera. The
line

l SB~b!52VB8 ~b! ~94!
i
e

-

n
e-
e
o

e

-
e
ic
e

f
e

defines a region SB in the headway-sensitivity diagram
which the model is linear unstable~Fig. 9!. For a>2 the
model is linear stable and the traveling wave solutions w
the specific initial conditionb253.0 andb1,b2 can be
divided into two regions. In regionA the traveling wave
solutions are linear stable unless the downstream valueb1

hits the critical valuebcrit when Bando waves form. This typ
of wave as described above occurs in regionB. The two
traveling waves with a growing region of a specific headw
bgap in between are stable.

Keeping the upstream and downstream headway fixed
varying a, the traveling wave solutions eventually becom
unstable for sufficiently small values ofa. Formally we still
obtain solutions from the ODE~60! so thatbcrit can be de-
rived. But whether a particular solution is stable or unsta
depends on the values of the headways which are involv
If the upstream and downstream headways are not part o
region SB and the adjustment does not consist of an osc
tory overshoot that intersects SB, then the solution is lin
stable and can be reproduced by the car-following mo
with corresponding initial conditions as presented above.

On the other hand, the solution is unstable if these con
tions are not fulfilled. Figure 10 shows how an initial jump
headway evolves with time in the car-following model. Aft
t550 the solution is very similar to those of the continuo
counterpart~60! but eventually it becomes unstable and t
typical cluster forms. For givena the solution eventually
jumps between two headways. Their values can be read f
the graphbcl in Fig. 9.

FIG. 9. Traveling waves with upstreamb253 and downstream
headwayb15bcrit become unstable fora,2 and form clusters with
headways given by the curvebcl .

FIG. 10. The traveling wave solution of a modest jump in hea
way fromb253 to b152.7 in the unstable regime (a51.0) cannot
be reproduced by the continuum model. Clusters form.
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Whether traveling waves of the regionC, the correspond-
ing region ofA in the unstable regime, are stable or not h
to be investigated in every single case. If either the upstre
or downstream headway is part of the region SB, then
solution is clearly unstable and develops towards the co
sponding cluster solutions. Forb253 andb1*bcrit the so-
lutions turn out to be generally unstable fora,2.

The rich structure of the stability of traveling waves
part of future research.

VII. ASYMPTOTIC SOLUTIONS

So far we have considered traveling wave solutions of
Bando model, its continuous counterpart, and the Kern
Konhäuser model. The first two showed a very good agr
ment for a number of different steady traffic situations. It
also of interest to examine the dynamic case of a nonstat
ary wave solution. This can be done in certain regimes,
cause in some special cases the higher order terms of
namic equations of the form

v t1vvx5a@V~r!2v#1O~rx ,rxx! ~95!

do not play an important role and can be neglected. T
traffic flow is then uniquely determined by the driver’s se
sitivity a and the optimal velocity functionV(r) combined
with the equation for the conservation of cars~22!.

As an example one might consider an initial disturban
in the ~car-following! Bando model~1! as in Fig. 11. Here, a
region of slightly higher congested traffic is situated in b
tween a homogeneous flow. As time increases, one end
with a wave solution shown in Fig. 12. The headway ov
shoots the initial disturbance by a shock and eventually
adjusts to the original headway. The jump in headway
creases with time, and a dispersive tail forms. As can be s
from the graph, there is a ‘‘stationary point’’K0 along the
road, where the solutions intersect until the downstre
propagating, nonlinear shock front passes this point.

This effect can be explained in a very simple continuu
model, similar to that of Lighthill and Whitham@14#, which
is based on the conservation of cars by substituting the
tionary relation

q~r!5V~r!r ~96!

FIG. 11. Initial condition: region of slightly higher congeste
traffic.
s
m
e
e-

e
r-
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n-
e-
y-

e
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e
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between the flow and the density forq to obtain

r t1q~r!x50 ~97!

⇔r t1@V~r!r#x50.
~98!

This model does not incorporate inertia. By use of t
method of characteristics it turns out that regions of den
r travel with speed

c~r!5
]q~r!

]r
5V~r!1r

]V~r!

]r
, ~99!

which is equivalent to the slope of the tangent in the fun
mental diagram in Fig. 13.K0 is therefore simply the maxi-
mum r0 of this curve, where the speed of the density wa
vanishes. To explain the other features, we start with
higher order continuum model~23!. First we simplify the
wave profile by piecewise linear solutions, which mode
triangle evolving in space and time as shown by Fig. 14~cf.
Whitham, @15#!. For the dispersive tail one can formall
write an asymptotic solution (t→`) as

r~x,t !5r01 r̂~x,t !5r01r1

xa

tb
,

r̂

r0
!1, ~100!

FIG. 12. The evolution of the pulse in Fig. 11.

FIG. 13. Fundamental diagram of the Bando model with sign
cant densities: undisturbed densityr2 , maximum of the flowr0,
inflection pointr ip , and the onset of the Bando waverbw .
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v~x,t !5v01 v̂~x,t !5v01v1

xg

td
,

v̂
v0

!1. ~101!

Two equations have to be balanced. Apart from the con
vation of cars, there is also the dynamic equation

v t1vvx5a@V̄~r!2v#1aV̄8~r!F rx

2r
1

rxx

6r2
2

rx
2

2r3G .

~102!

By substituting Eqs.~100! and ~101!, it is seen that the re
laxation terma@V̄(r)2v# dominates all the other terms a
t→` and x→`, because they incorporate time and spa
derivatives. Therefore this term has to vanish exactly, le
ing to

v5V̄~r!, ~103!

a5g, ~104!

b5d. ~105!

Equation~103! can be substituted into the conservation
cars ~97!, which leads to Eq.~98!. A Taylor expansion of
V̄(r)r around some valuer0

V̄~r!r5~V̄r!01~V̄r!08r̂1
1

2
~V̄r!09r̂

21••• ~106!

~dash equals derivative with respect tor) analogous to the
asymptotic expansions~100! and ~101! gives us

r̂ t1~V̄r!08r̂x1~V̄r!09r̂ r̂x50. ~107!

Near the maximumr0 of the flow, the first derivative van
ishes, and a possible balance can be extracted from

2r1b
xa

tb11
1~V̄r!09r1

2a
x2a21

t2b
50 ~108!

as

a51, b51, and r15
1

~V̄r!09
,0. ~109!

FIG. 14. A model for the pulses.
r-

e
-

f

Now the density around the flow maximum becomes

r~x,t !5r01r1

x

t
~110!

50.3620.062
x

t
~111!

and the velocity

v5V̄~r!.
V̄r

r
5

~V̄r!01~V̄r!09r̂
2

r01 r̂
~112!

⇒v~x,t !.
~V̄r!0

r0
2

~V̄r!0

r0
2~V̄r!09

x

t

~113!

51.6110.28
x

t
. ~114!

The headway is given by

b~x,t !5b01b̂~x,t ! ~115!

5
1

r0
2

r1

r0
2

x

t
~116!

52.7810.48
x

t
. ~117!

This corresponds to an increasing velocity and headway
spectively, which is consistent with the graph. To comp
the asymptotic solution~117! with the numerical data from
the car-following model, we place the origin in Fig. 12 at t
stationary pointK0 where the pulses intersect and take t
data fromx5200. The dependency onx is obviously linear,
but the inverse time relation as well as the coefficientr1
have to be checked. Figure 15 shows a very good agreem
between both these data, so that we can regard the ta
been understood. What remains is the movement of
shock. But here one more look onto the fundamental diag
gives a qualitative explanation. Two successive jumps
headway are drawn in Fig. 14. The shock moves with vel
ity

FIG. 15. Comparison of the numerical data and the asympt
solution ~117! at x5200.



t
y

-
th
he

a
th
/
a
s

a
on

way
xi-

ar-
al
e

tion
us

is-
del
se
m

a
l-
the

s,

le
the

dy-

n
ips

1066 PRE 61PETER BERG, ANTHONY MASON, AND ANDREW WOODS
ẋ5c~r!5
q22q~r!

r22r
~118!

@cf. Eq. ~58!# along the road wherer denotes the highes
density of the pulse. The change of the jump in headwa
given by the intersection of the asymptotic solution~111!
and the shock front

ṙ5 ṙ̂1
]r̂

]x
c~r! ~119!

52
x

~V̄r!09t
2

1
1

~V̄r!09t
c~r!

~120!

@where ṙ̂ is the change of the tail and (]r̂/]x)c(r) is the
change of the shock front#. This system of coupled differen
tial equation describes the motion of the shock along
road. It is easy to see that it must turn around at a point w

ẋ5c~r!5q22q~r!50, ~121!

and eventually it passes by the stationary pointK0.
The features of traffic flow described in this chapter c

be described by a simple continuum model, in which
length scale of evolution of the flow is long compared to 1a,
the relaxation required by traffic to adjust to the optim
velocity OV. Hence, the flow is accurately modeled by a
suming that it has the optimal velocity.

VIII. CONCLUSION AND OUTLOOK

We derived a continuum model from a second-order c
following ~Bando! model by using an integral representati
ug

v

hi-
is

e
n

n
e

l
-

r-

of the headway. This enables us to transform the head
and the velocity consistently by using an asymptotic appro
mation for the headway in terms of the density. For c
following models of the Bando type, including an optim
velocity function V, we gave a general expression of th
equivalent continuum model, even though the transforma
allows for any model to be transformed into its continuo
counterpart. In the case of the Bando model@1# the con-
tinuum version obeys the same stability criterion as the d
crete counterpart. Numerical simulations of the Bando mo
predict the formation and evolution of traffic shocks. The
are well modeled by traveling waves using our continuu
model provided the gradients are moderate.

The transformation to the continuum model delivers
powerful tool for traffic simulations. To calculate the trave
ing wave solutions on a straight road the programs for
Bando model simulations required about 4 h~2000 cars,
stepsizeDt50.005, simulation timet52000; Pentium 233
MHz! according to 2000 coupled differential equation
whereas the solution of the ODE’s~60! or ~86! took just
about 5 s. In addition the continuum model allows for simp
estimations of overall traffic quantities. Some features of
autonomous cruise control systems~ACCS!, whose algo-
rithms for the regulation of headway are often based on
namic equations similar to the Bando type~1!, may be inves-
tigated in a continuum manner.
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