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Continuum approach to car-following models
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A continuum version of the car-following Bando model is developed using a series expansion of the
headway in terms of the density. This continuum model obeys the same stability criterion as its discrete
counterpart. To compare both models we show that traveling wave solutions of the Bando model are very
similar to those of the continuum model in the limit of small changes of headway. As the change of headway
across the wave increases the solutions gradually diverge. Our transformation relating headway to density
enables predictions of the global impact and characteristics of any car-following model using the analogous
continuum model. In contrast, we show that the conventional continuum models which account for effects of
pressure and dispersion predict behavior which is distinct from the global behavior of discrete models.

PACS numbsg(s): 89.40:+k, 45.70.Vn, 02.60.Cb

[. INTRODUCTION proximation of the car following model, which is valid when
the spacing between cars is small relative to the length scale
The purpose of this work is to develop a systematicof changes in speed and headway. We then compare this
method for relating car-following and continuum models of with the continuum model of Kerner and Konlser[5] pro-
road traffic. The relation between these models is of intereqposed in the literature.
since they provide different pictures of the flow, which  Continuum models have become progressively more com-
should converge in the appropriate limit. Continuum modelsplex incorporating effects of inertia and dispersion. Usually
give an overview of the global traffic flow, which is impor- one has to deal with two coupled differential equations in
tant for developing insight into traffic quantities such asterms of the density and the velocity of the cars in space
throughput, density distributions, or the onset of jams, with-and time. Besides the equation for the conservation of cars
out detailed regard to the properties of each car. They cafcontinuity equatioh
illustrate the effects of speed control systems along the road
and allow for analytical calculations. Continuum models dif- pit(vp)x=0 @

fer from car-following models with regard to carrying out the svstem evolves according to a dvnamic equation. which
simulations. With continuum models one has to deal with y 9 y q !

two coupled partial differential equations instead of a feWdescrlbes the acceleration of cars depending on some local

hundred or even thousands of ordinary differential equationg]%fgglquammes' A typical model is the Kerner-Konlser
in the latter case.

Car-following models represent the only class of models Vik(p)—V o v
that describes each vehicle in a deterministic manner includ- Vit VWy=———— =3 3
ing the response to local variables such as speed, headway, T p p
gnd change O.f headway. Therefore they seem to be of greWith an optimal velocity functioiVk(p). The coefficients
importance with regard to autonomous cruise control SYSL2 of the “nressure” term ang. of the “viscosity” (disper-
tems (ACCS), which should stabilize the flow as well as siove) term pres ectively, are considered to beyconstzfnt This
maximize the throughput. In this paper we follow the Bando » fesp y: '

L . : model is able to describe the formation of instabilities and
model[1] of road traffic, in which the acceleration of every . . . o .
car is determined by its velocity, and a desired speed traffic jams. In discussion$] of the derivation of the higher

. ; order terms, it appears that the diffusion term was originally
V(by) depending on the headway, to the car in front introduced as a means of stopping steepening waves forming

discontinuous shocks. Nagdél] explained the diffusion term

as an averaging effect caused by implicit random fluctuations
in p andv. It has been argued that these noise terms are
important, since they can have a profound effect on solutions
of certain PDE’s. For instance, Burger’s equation

\./n:a[VB(bn)_Vn]- (1)

Vg(b,) =tanhp,—2)—tanh(=2) is called the optimal veloc-
ity (OV) function anda is the driver's sensitivity, which
equals the inverse of the reaction time, Jayrhis model is
able to reproduce various features of road traffic and is the Ug+ U U= Uy (4)
subject of much current resear¢B—4|. By developing a
formal asymptotic procedure we derive the continuum aphas well-known travelingN-wave solutions which cease to
exist if Gaussian noise is added to the right-hand side. Here,
rather than these heuristically motivated continuum models,
*Electronic address: Peter.Berg@bris.ac.uk we aim to derive an asymptotic equation analogous td&q.
"Electronic address: A.W.Woods@bris.ac.uk from the car-following model. We thereby establish that such
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diffusive behavior is an implicit part of the car-following function from which we should be able to find the positions
model. In the case of a homogeneous, stationary flow albf the vehicles. One approach is to require that

time and space derivatives vanish, and for the car-following

model we then obtain the relation between spegdand fxi“ _

headwayb, . p(x)dx=1 (12)

Vo= Vg(bo), (5 for alli. Thus in addition to our density function, we require
the position of car 1. Given only the conditioh2), map(11)
is not unique, but its inverse is. However, it is the inverse
Vo=Vik(po)- (6) map that we require in cqnstructing a continuum qqyation of
motion from a car-following law. We use the definition of
For such uniform flow conditions, the density is simply headwayb=Xx;,;—X; to arrive at an equation involving the

given by the inverse of the headway continuum variablep by extending Eq.(12) to all points
along the road

while from the continuum model we have

p=1h, (7

X+ b(x,t) b(x,t)
and one can compare both types of model by drawing a f P(X’,t)dx'=J p(x+ydy=1. (13
fundamental diagranthat describes the dependence of the X 0

flow qq (throughput on the headwaycar-following model  gxpanding the second integral in powersypive integrate to

Vo Vg(bg) obtain the asymptotic seri¢8]
do(bo) = by by (8) L .
bp+ Ebsz—l— §b3pxx+ cee=1. (14)
=0o(po)=Va(1/po)po 9) ! !

The first term corresponds to the usual definition of the den-

sity (7). We expand the series to this order for two reasons.
(100  First, we would like to obtain a continuum model that is

capable of describing some characteristic traffic parameters
In nonhomogeneous, nonstationary situations the camentioned by Kerner and Konaser[5]. They showed that a
following and continuum models can only be compared bydispersive term has to be incorporated to do so. Second,
stability analysis and numerical simulations. It is hard to saythese higher order terms are needed to maintain the same
which terms or effects are responsible for the difference irstability criterion for the continuum model as for the car-
the simulations. Here we show that the relation betweerfollowing model, as we show in Sec. Ill.
headway and density is of great importance. When there are It is assumed that each term is of smaller magnitude than
long range fluctuations in the headway or the density alonghe one preceding it. This assumption is at the core of con-
the road, the usual definition of the density in terms of thetinuum approximations of many kinds, and can be summa-
headway(7) is only an approximation. In Sec. Il we intro- rized by condition
duce a more accurate method to relate these variables.

or density(continuum modsl

do(po) =Vkk(po)po-

er=—<1 (15)
Il. DERIVATION OF THE CONTINUUM MODEL A

The difficulty of relating car-following and continuum for all scalar quantities\ associated with traffic. It amounts
models of road traffic is in part a result of the fact that theto saying that changes in the flow occur over a length scale
first is based on the headway and the latter on the vehiclef many vehicles. However, even in this case the continuum
density. It is important to relate these two quantities cor-approach is not applicable to sharp fronts.
rectly. In the literature the densigyis usually defined as the If we consider the cubic term to be much smaller than the
inverse of headway7). There is a problem with this defini- linear and quadratic term, we can first solve the quadratic
tion. For instance, suppose we have a set of cars positionastjuation forb. We obtain
atx=1,2,4,8... . The car apositionx has headwayp=x.

Using formula(7), we obtainp= 1/x, which is extended into 1 py
continuum domain by permitting to take any positive, real b~ ;_ 2,3
value. According to this, the number of cars on the open p

interval (1,y) is logy. However the actual answer is 199 Regarding the cubic term as a perturbation, we exgiinca

(16)

and so we are consistently a factor of dgvrong. perturbation series and approximate the solution as
We deduce that for nonhomogeneous flow situations we

cannot transform the car-following model simply using rela- 1 p o p2

tion (7). We need a consistent way to set up a map b~ X X X 17)

{x}=[p:R—>R], (11) | _ _
The first term represents the classic transformation for relat-
where the sefx;} represents the positions of the vehicles ating the headway and the density. The second term is similar
a given instant in time, an@g(x) is the associated density to apressure ternin gas kinetics and acts to destabilize the
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traffic flow. If we only retain this term, then the continuum length scale and qualitative behavior of shock wave solutions
model is always unstable unlike real traffic flow. The disper-(Sec. \j. The accuracy increases with further terms of the
sive termp,, smoothes variations in traffic density and has aasymptotic serie$l7).

stabilizing effect on traffic flow, which counteracts the pres- Nagel[7] argues that the diffusion term can be regarded

sure term. We therefore retain terms up to this order. as stochasticity added as a high-frequency correction to den-
Equation(17) can then be substituted into car-following sity, which is supposed to be slowly varying in space and
models to yield equations fqr instead ofb. time. However, our analysis reveals that the transformation

So far we have established a link between the continuurfrom a car-following to a continuum model also produces a
density and the headway. The other quantity relevant to botHiffusive or smoothing effect, without the need to introduce
continuum and car-following models is the spaedn order  any stochasticity.
to link the two models completely, we need to establish that
now v is consistent with the quantity representing the speed

of each vehicle in the car-following models. Il STABILITY ANALYSIS

Taking a total time derivative of each side of Ef3), we Before proceeding with numerical calculations, we first
obtain show that the continuum version of the Bando mo@s),
o (23) obeys the same stability criterion as its discrete counter-
X o
_ part. Bandoet al. [1] proved that an initially homogeneous
J; Py, DAY T (X D) p(X+D, D) =xip(X,1) (18 flow is unstable, if the relation
X+b 2Vi(b
= [ oy 0ay+ e b0 p0c O VDR e LA (26
X
(19
«+b between the driver's sensitivitg and the derivative of the
=f [pi(y, )+ (p(y,)v(y,1))yldy (20) OV function Vg at the given value opy=1/b, is satisfied.
x The analogous criterion for the continuum model may be
found by linearizing the model
=0. (21
Hence the conservation equation pit(pv),=0, (27
pit(pv),=0 (22 _ N
vitvv,=a[V(p)—v]+aV'(p)| -+ ———
guarantees that the integral of density along the road from ! =alVip)—v] (p) 2p  6p? 2p°
any vehicle to the vehicle it is following is 1, so in this sense, (28

the definition of velocityv is consistent.

Applying our analysis to the second-order model of
Bandoet al.[1] in Eq. (1), we obtain the expression for the
conservation of car€2), coupled with the approximation of

around some initial values, andvy=V(po)

the car-following model p=p0+;3, (29
2
_ _ p _ .
vit+vve=a[V(p)—v]+aV(p) g—;+ %— 2—X3 . V=Vvg+V. (30)
p p
(23 This leads to the perturbation equations
Here we have set A A A
_ Pt poVxtVopx=0, (31
V(p)=Vs(1lp), (24)
N/ ~ ~ Y ~ o~ V7 ;7x ;)xx
dVg(b) N(p) = Vi+vovx=a[V'(po)p—v]+aV(po)| 5—+—5|.
0< 5 |b:l/p:_p2 =—pNV'(p). (25 tTVovx=al[V'(po)p—V] Po 200 6P(2)

o (32)

Equation(23) is analogous to the Kerner-Koniser model

(3). However, an important difference between that modeMWe now calculate the eigenvaluegk) of a harmonic dis-
and the new modgR3) lies in the coefficients of the higher turbance

order terms. In the Kerner-Konbser model the coefficients

are assumed to be constant, while expressZ8) reveals

that they actually depend gn c(z) is now analogous to the F(x,t)=(
term —[aV’(p)/2]. By comparison with the discrete Bando

model numerical simulations show that the dependence of

these coefficients on the densjiyis necessary to match the so that we can rewrite the equations in the form

p(x,t)

) = ( {)O) expli[kx—w(K)t]}, (33
v(X,t)

Vo
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i(kvg— ) ikpo and by defining
G_iavk avie V[ Al
—aV'— Vo— - 7 2 L
200 602 0 Q(k):=Reg 1+ a (k i2pok+ 3pok ) (37)
Po the criterion is equivalent tf)(k)|<1. By writing
X| . |expli[kx—w(k)t]}=0. (34 B ) B
vo ’ 4V’ po
. . - o . QK)[=[| 1+ —K| +| - k
This equation has nontrivial solutions if the determinant van- a a
ishes — 271/4
. . 4+ — K8
i(kvo— ) ikpo 3apok ) |cog ¢/2)| (38)
— iaV'k aV'k? =0. _ _
—aVv' — >t i(kvo—w)+a 0. 39 2V’ 22 4V'py
po 6p0 =1+ ?k +| — a k
As long as the imaginary part @f is negative, the system is T 2714
stable. Solutions have the form 2V 3) } H—COS"S' (39)
3apg V2
a
wy AK)=Kvg—i > where
2V’ ] i _ EYZ 2 _l_ 3
X| 1= \/1+ T(k2—|2pok+ 3—p0k3>J, ¢ ar%l—k a (k |2P0k+3p0k ) (40

(36) it may be seen that the condition Im){<<0 is equivalent to

2
+

2V’
1+ —K2
a

m<l. (41

CA4Vip, 2V ks)T"‘ 1 1+(2V'/a)k?

K+ — |1+ — =
a 3apg 2 4V’ v \°
\/— - p0k+ k3
3apg

v \°
1+ —K?| +
a

In order to solve this inequality, we restriktto be non-  the system is stable. Takingy=—p3V' into account, this
negative, sincelQ (k)| is symmetric. Solving|Q(k)|=1  reduces to
leads to three solutions

— —>1, 45
3ap, 2V 2Vg 49
ko=0, ko= "\/6ps+— - (42

V' a which is exactly the stability criterion found by Baneéoal.
[cf. Eqg. (26)]. This model is unstable in a regime<())('?l

<p<pc, such that

Recall thatv’ <0 from Eq.(25). k_ is always real, whereas
k, might be either real or complex. Since we know that
|k, |<k_, Q(0)=1 and a

- 2 Vap) L
QK) — —c0, 43)

(46)

A stability analysis for the Kerner-Konbaer model leads to
we can deduce from the continuity 6f(k) that Q(k_)= a criterion similar to Eq(38). Now the system is stable, if
—1. So fork>k_ the model is unstable, but since this cor-

responds to disturbances which are smaller than the initial i4poaVik—4p2cak®|
headway, we do not take this case into further consideration. |[Quk(0)]=|Rg 1+ (apo+ uk?)? <1
However, ifk, is real, there is a region<Ok<k, of insta- Po™ # (47)
bility Q(k)>1 with respect to long wavelengths.Kf. ¢ R,
which means is satisfied. Taking the limits
, 3apy_ | 2V’ 2¢5
6po+ v _T<O' (44 k—>0:|Q(k)KK|—>1—¥k —1_, (48
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2.2 8.2

4pCo
2 —1_. (49

k_>oo|Q(k)KK|_) 1- 31 b

This shows that the model is stable for any initial vapigeof 8

the density and arbitrary sensitivig=1/T with respect to

short and long range disturbances unlike the continuum ana-
log of the Bando model. However, for the set of parameters 28
chosen[see Egs.(79)—(85)], the model is unstable in an
intermediate range@pElK<p< pEZK in an analogous way to 27}

the Bando model bLﬁElKaﬁpcBl andpcKzKaﬁpE‘Z. This explains ve , ‘
the basic difference between these two continuum models. -10 5 0 5 10

X

29

headway

IV. COMPARISON OF TRAVELING WAVE SOLUTIONS FIG. 1. Initial change of headway in the Bando modei0.

To test the accuracy of our model, we compare som
traveling wave solutions of the car-following Bando model
in the stable regimg9] with those of the continuum version.

The traveling wave of speedhas the form

%’hroughout the remaining parts we assua¥2.0 in order

to be in the stable regime. The wave that develops from the

initial condition shown in Fig. 1 is shown in Fig. 2 evolving

towards the wave solution of the continuum mo¢g0). As

the initial jump in headway increases, the wave develops an

oscillatory tail. Because of the increasing of headway gradi-

p(x,1)=p(x—ct)=p(2), (51) entsZ the solution' govgrned by the con'tinuum model begins
to diverge from its discrete car-following counterpart, al-

v(x,t)=v(x—ct)=v(2), (50

z=x—ct, (52) though the length scale and the oscillatory characteristic of
the wave are still described propeflyig. 3).
where the equation for the conservation of c&18) yields If the downstream headway in the car-following model is
the relation decreased below some critical valge = py,,,, an unusual
type of nonlinear wave solution develdf®, [10]. It consists
p(v—=C)=qp. (53 of two traveling waves of different speed, separated by a

) _ i _ ) growing region of congested traffic of densijty,,. We may
Jo is some integration constant that is determined by thgq| this a Bando wave. Givepyap, Which can only be de-
boundary conditiong_=p(x——=), p.=p(X—=*), V_  termined numerically, we can calculate traveling wave solu-
=V(X——=), andv, =v(x—), respectively, as follows: tjons in the analogous continuum model for both up- and
downstream propagating shocks. They may be matched to-

Go=p+(v.—C) (54 gether to describe the unusual wave type, if one knows the

— long-time behavior of the gapwidth. We assume that in this

=p+[V(ps)—c] (59 Jimit the gap will increase at a constant ratg,, which can
be calculated from the continuum model according to

=p_(v_—c) (56)

— Vgap= Cdown— Cup- 61)
=p_[V(p-)—cl. (57) sap howm e (

Equations(54—(57) determine that the wave speedhas €r€ Caown andcy, represent the downstream and the up-

stream wave velocity, respectively. Both parameters can be

value determined following Eq(58)

pV(p:)—p-V(p-)
C= i - (58 3.05 i ' ' " continuum ——

P+—P- car following: =250
3 car following: =500  x
car following: t=1000 =

and so both the variableg andc are uniquely determined
by the values op at = «. If we substitute these relations into 295

our model equatioi23) and make the following transforma- R
tion § 29

u(z)=v(z)—c, (59 285 1
we obtain the equation for the speed of canm the frame 28
moving with the wave in the form . . ‘ . ‘ .

2 275 50 60 70 80 90 100 110
vy 7 u; Uzz 2uz X
uu,=a[V(qe/u)—u—c]—aV’'(qp/u) 2—+6 +3 .
u Qo Qou FIG. 2. The shock wave profile of the Bando model approaching

(60) the traveling wave solution of the continuum model.
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32 . : : : 60 — — .
continuum —— car following model: numerical data ~ +
3 car following linear interpolation ———
50
2.8 e
,"’/
2.6 40 F —y’,»‘
g o4l S L
= £ g0 s
o 22 g
= o 7
,*/
2t 20 | L
18} g
10 | A
16 .
14 . . . . . . . 0 . . .
680 675 670 665 660 655 -650 645 -500 0 500 1000 1500
X t
FIG. 3. The change of headway after 1000 for an initial jump FIG. 5. Determination of the time offseét,i» Of the Bando
fromb_=3.0tob,=1.8. wave .

p=V(p+)— PgapV(Pgap)
Cup,down™ .

agreement. We conclude that our continuum model is a very

(620 good approximation to the discrete car-following Bando
P+~ Pgap model (1).
The gapwidthd,,, then has the long-time form .
V. COMPARISON WITH THE KERNER-KONHA USER
dgap=Vgap(t—tinitial)» >tinitial » (63 MODEL

wheret;,itia IS the time offset associated with the develop-
ment of the waves. Once more it can only be estimated b
numerical solutions of the car-following model and compari-

son (Figs. 4 and b suggests thatt;;jo~ —189.78. For the
set of parameters

Next we show that the transformati@i?) is crucial in
rder to derive a continuum model that is qualitatively analo-
ous to the underlying car-following model. To this end we

compare predictions of our model with those of a previously
published continuum model and the corresponding car-
following model. Herrmann and Kerngt1] investigated the

p_=3.0, (64)  Similarities between their continuum model and a car-
following model that is also based on a relaxation term. They
p.=17, (65)  considered in greater detail cluster effects in both models by
examining traffic jams in a Bando type model
we find from the numerics the gap density to be 1

and the gap speed from the continuum model and comparing the predictions to their own continuum model

Vgap= —0.6597- (— 6858 =0.0261. (67) pit(pv)x=0, (69
This corresponds very well with the slope of the curve in 1 2 Px Vixx
Fig. 5. We are now able to compare the Bando wave and the Vit W= [Vi(p) —v]=co— ML (70)
two individual traveling wave solutions of the continuum

model in the same graplirig. 6), which shows a very good In both cases they chose the same OV function

. ; . . . T — "carfollowing  +
3 =200  x I continuum -——-——- 4
T, t=500 * * continuum ===
x t=1000 ©® 4
a t=1600 = 4
t=2000 o \
- 25 b
25 o . \
>
o
3 . 3 er
£~ £~
2r ¥
. | ’v_¢--+~v-,ﬂ,+_+.+.+A+,+,+,+,
® \ ¥
AEE T LT TN LY . o 15L Y /
* + x o . o . X
18y B:." ++x ** o . © 1 \"H—+++++++-§—+++*"P"
. - _— oooo
. 1 | . . ! 1 . " 1 . 1 . . . 1 .
-150 -140 -130 -120 -110 -100 90 -80 -70 -60 -700 -690 -680 -670 -660 -650 -640
X

X
FIG. 4. The forming of a Bando wave for initial valuds. FIG. 6. Comparison of the Bando wave and two individual trav-
=3.0 andb, =1.7.

eling wave solutions of the continuum modéD).
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(p-m)/i»)‘l
g

Vi(p)=vo| | 1+ex —d (71

with
d= 1+exp1_0ﬂ) h (72

and
Vg(b)=V(1/b). (73

The top speed of cars is definedwas=V,(0). Theparam-
eters of the car-following model are fitted until both models

headway (km)

0.052

0.05

0.048 -

0.046 -

0.044 +

0.042

0.04 |

0.038
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T
car following
analogous continuum

K.-K.: T=5.08 - -
K.-K.: T=0.9855 -

35

45

x (km)

show the same wide stationary jams in their simulations(6
moving on a circular road. This gives the following param-

eters for the discrete model:

T=0.985s, (74)
p= 180 vehicles/km, (75)
v¢=100.8 km/h, (76)
p;=36.5 vehicles/km, (77)
o=0.02875, (78)

whereas the parameters of the continuum model are based

real traffic data:

T=5s, (79
Co=39.88 km/h, (80)
pu=210 vehicles km/h, (81
p=180 vehicles/km, (82
v;=100.8 km/h, (83
pi=42.7 vehicles/km, (84)
o=0.04. (85)

FIG. 7. Comparison of traveling waves in the Bando model
8), the Kerner-Konhaser(K.-K.) model(86), and the mode{60)
in the stable region for the same optimal velocity function.

We now compare solutions of this ODE and the car-
following model (68) to those of our continuum modé&b0)
with an OV function as in Eq(73) and parameters as in Egs.
(74)—(78). Our model predicts oscillatory behavior in con-
trast to the car-following model, but significantly it predicts
the same length scaléig. 8. This arises from the depen-
dency of the coefficients of the higher order terms on either
the density(23) or the velocity(60).

This dependency does not occur in conventional con-
tinuum models, but it could well be an intrinsic feature of a
delay differential equation as recently proposed by Nagatani
f’f?], [13]. In order to derive a modified Kortweg—de Vries
equation for the jamming transition in a continuum model he
used a simplified version of the Kerner-Konisar model

(87)

with the OV functionV(p)=Vg(1l/p) of the Bando model
(1). He simplifies it in the sense that he drops the pressure
and the dispersive terms of the original model. On the other
hand, the anticipation is now incorporated in a nonlocal term
p(x+1). In this model that is dimensionless in space the
average headwal,, is supposed to be of order onb,(
=1). The idea is that a driver adjusts his velocity according
to the observed headwéyx) = 1/p(x+1). Even though this

is not the correct relation between headway and density as
shown above we proceed to derive the corresponding ordi-

(pv)i=apeV(p(x+1))—apv

For unstable flow these two models may seem to describe the
same qualitative type of moving structures such as dense-
sparse regions. However, if we examine the stable regime,
we find that these models are actually not equivalent. For
comparison Fig. 7 shows how the Kerner-Konkar model
cannot match the length scale of a jump in headway of a
traveling wave predicted by the car-following modég).
Even for the same driver reaction tirfie= 0.985 s the model
predicts a much more extensive region of adjustment in order
for the headway to decreaselte=40 m.

The calculations are carried out by substituting EzB)
into Eq.(70) to obtain the traveling wave equation analogous
to Eq. (60)

o

1 LU,
UUz=f[ka(QO/U)—U—C]+COU+ %UUzz- (86)

headway (km)

0.052

0.05

0.048 -

0.046 -

0.044 +

0.042

0.04 |

0.038

T
car following
analogous continuum

4.4

4.6

438 5
x (km)

52

FIG. 8. Comparison of traveling waves in the Bando mdés)
and the analogous continuum mod@0).
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nary differential equation for the traveling waves. Nagatani 4
couples the dynamic equation to a continuity equation of the 35 L T by
form N b.
P+ po(pV),=0. @ g [ S
8 2 SB x i berit
In case of a traveling wave the transformati®@o)—(52) en- T os \
ables integration of Eq.88) to give N B
05 bet
p(pov—C)=dp. (89 o
1 1.5 2 25 3

Inserting this relation into Eq87) yields
FIG. 9. Traveling waves with upstrealm. =3 and downstream

ww :a_pcz, ( do Wi 3W3— EWZ 90) headwa)b+=.bcm become unstable f@<2 and form clusters with
z q002 W—(Z+1) 2 c headways given by the cuni, .
defines a region SB in the headway-sensitivity diagram in
with which the model is linear unstabi&ig. 9. For a=2 the
model is linear stable and the traveling wave solutions with
W= poV—_C. (91)  the specific initial conditionb_=3.0 andb_ <b_ can be

divided into two regions. In regiom\ the traveling wave
Since this is a delay differential equation it is not straightfor-splutions are linear stable unless the downstream vialue
ward to compare it to our modéB0). In general a delay hits the critical valués,;; when Bando waves form. This type
differential equation cannot be solved by a Taylor expansiof wave as described above occurs in reg@nThe two
and its truncation after a certain amount of terms. Neverthetraveling waves with a growing region of a specific headway
less in order to have similar equations the first terms of they ,, in between are stable.
Taylor expansion should be similar. If we keep terms up to ~ Keeping the upstream and downstream headway fixed and

first order inV’ varying a, the traveling wave solutions eventually become
unstable for sufficiently small values af Formally we still
do do [ do |W2) obtain solutions from the ODE5S0) so thatb.; can be de-

v w(z+ 1)) - w(z)) —Ho (vﬁ w(z)? rived. But whether a particular solution is stable or unstable

depends on the values of the headways which are involved.
If the upstream and downstream headways are not part of the
region SB and the adjustment does not consist of an oscilla-
tory overshoot that intersects SB, then the solution is linear
(92) stable and can be reproduced by the car-following model
with corresponding initial conditions as presented above.
we obtain a corresponding second order model On the other hand, the solution is unstable if these condi-
tions are not fulfilled. Figure 10 shows how an initial jump in

W,2)  W(2)

_E V’( QO)
29 W(z) w(2)?  w(z)®

apg Y% G\ [w, w w2 headway evolves with time in the car-following model. After
_ ' z 7z z 3 . . . . .
ww,=— V(—) —qoV (—) (—2+ 5 —3) w t=>50 the solution is very similar to those of the continuous
QoC w WiAwS 2w w counterpart60) but eventually it becomes unstable and the
typical cluster forms. For givem the solution eventually
— 3\,\,3_ sz (93 jumps between two headways. Their values can be read from
c? c the graphby, in Fig. 9.
that differs not only by its expansion terms but also by the o ' ' ' inital conclfion ——
nonlinear termaw?/c? andaw?/c. Hence the class of solu- a5t ¢ N
tions differs also from our model. Nevertheless the expan- ]
sion (93) shows that a dependency of the coefficients of the !
pressure and dispersive terms on the density is an intrinsic )
feature of this model. But it is not an analogous model of the %
Bando model. =
VI. TRAVELING WAVES IN THE UNSTABLE REGION L o
The correspondence of the traveling wave solutions of N , , , , ,
both the continuum and the car-following model cannot be T 50 0 50 100 150 200 250
generalized to all values of the sensitivity parameteThe X
line FIG. 10. The traveling wave solution of a modest jump in head-

. way fromb_=3 tob, =2.7 in the unstable regima & 1.0) cannot
lsg(b)=2Vg(b) (94) be reproduced by the continuum model. Clusters form.



1064 PETER BERG, ANTHONY MASON, AND ANDREW WOODS PRE 61
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FIG. 12. The evolution of the pulse in Fig. 11.
FIG. 11. Initial condition: region of slightly higher congested

traffic. between the flow and the density fqrto obtain

_ Whe_ther tra\_/eling waves of the_ regi@ the correspond- pi+0(p) =0 (97)
ing region ofA in the unstable regime, are stable or not has
to be investigated in every single case. If either the upstream
or downstream headway is part of the region SB, then the
solution is clearly unstable and develops towards the corre-
sponding cluster solutions. For =3 andb, =b,; the so-
lutions turn out to be generally unstable 2.

The rich structure of the stability of traveling waves is
part of future research.

<pt[V(p)plk=0.
(98)

This model does not incorporate inertia. By use of the
method of characteristics it turns out that regions of density
p travel with speed

ad(p) v pﬁV(p)

VIl. ASYMPTOTIC SOLUTIONS C(p):T: (p)+ ap (99

So far we have considered traveling wave solutions of the
Bando model, its continuous counterpart, and the Kernerwhich is equivalent to the slope of the tangent in the funda-
Konhauser model. The first two showed a very good agreemental diagram in Fig. 1X, is therefore simply the maxi-
ment for a number of different steady traffic situations. It ismum p, of this curve, where the speed of the density wave
also of interest to examine the dynamic case of a nonstatiorvanishes. To explain the other features, we start with the
ary wave solution. This can be done in certain regimes, behigher order continuum mod€R3). First we simplify the
cause in some special cases the higher order terms of dyvave profile by piecewise linear solutions, which model a
namic equations of the form triangle evolving in space and time as shown by Fig(df4
Whitham, [15]). For the dispersive tail one can formally
vi+vv,=a[V(p) —Vv]+O(py,pxx) (95 write an asymptotic solutiont{~«) as
do not play an important role and can be neglected. The A X¢ p
traffic flow is then uniquely determined by the driver's sen- p(X,t)=potp(X,t)=pot+p1—, —<1, (100
sitivity a and the optimal velocity functioW(p) combined P Po
with the equation for the conservation of c42®).

As an example one might consider an initial disturbance ' Iy T e ——
in the (car-following Bando model1) as in Fig. 11. Here, a \ o
region of slightly higher congested traffic is situated in be- 05y P, |
tween a homogeneous flow. As time increases, one ends up 0a
with a wave solution shown in Fig. 12. The headway over- ’
shoots the initial disturbance by a shock and eventually re- =z .|
adjusts to the original headway. The jump in headway de- <
creases with time, and a dispersive tail forms. As can be seen oz |
from the graph, there is a “stationary poin®, along the
road, where the solutions intersect until the downstream o1
propagating, nonlinear shock front passes this point.

This effect can be explained in a very simple continuum 0 . L . . .
model, similar to that of Lighthill and WhithariL4], which 02 04 densﬁf 08 !

is based on the conservation of cars by substituting the sta-
tionary relation FIG. 13. Fundamental diagram of the Bando model with signifi-
cant densities: undisturbed densjty , maximum of the flowp,
d(p)=V(p)p (96) inflection pointp;, , and the onset of the Bando wapg,, .
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3.2

CONTINUUM APPROACH TO CAR-FOLLOWING MODELS
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FIG. 14. A model for the pulses.
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FIG. 15. Comparison of the numerical data and the asymptotic
solution(117) at x=200.

Now the density around the flow maximum becomes

(101

X
Two equations have to be balanced. Apart from the conser- p(x’t):p0+’31f (110
vation of cars, there is also the dynamic equation
X
2 =0.36—-0.062— (112
Px | Pxx  Px t
vitvvy,=a[V v]+aVv’
tvv,=alV(p)—v] (p) 20 6y 2 _
(102 and the velocity
By substituting Eqs(100) and (101), it is seen that the re- — Vp  (Vp)ot(Vp)ip?
. = . v=V(p)=—=— (112
laxation terma[V(p) —v] dominates all the other terms as p p0+p
t—o and x—o, because they incorporate time and space
derivatives. Therefore this term has to vanish exactly, lead- (Vp)o  (Vp)g X
ing to jv(xlt):__—”?
o Po Po(V )o
v=V(p), (103 (113
X
a=v, (104 =1.61+0.28. (1149
p=a (109 The headway is given by
Equation (103 can be substituted into the conservation of B -
cars (97), which leads to Eq(98). A Taylor expansion of b(x,t)=bo+b(x,t) (119
V(p)p around some valug, 1 pox
3 0t 119
37 N7 NSNS N/ oA 0
Vp)p=(Vp)o+ (Vp)op+ 5 (Vp)gp?+--- (10 Po
X
(dash equals derivative with respectdp analogous to the :2-78+0-48f- (117)

asymptotic expansiond00) and(101) gives us

pit (Vp)opx+(Vp)gppyx=0.

Near the maximunp, of the flow, the first derivative van-
ishes, and a possible balance can be extracted from

a X2a—l
_ n 2
P1B 1 (A1 +(V P)opla 128

as

<0.

a=1,p=1, and p;=—=

”

Plo

=0

This corresponds to an increasing velocity and headway, re-
spectively, which is consistent with the graph. To compare
the asymptotic solutioiil17) with the numerical data from

the car-following model, we place the origin in Fig. 12 at the
stationary pointK, where the pulses intersect and take the
data fromx=200. The dependency onis obviously linear,

but the inverse time relation as well as the coefficippt
have to be checked. Figure 15 shows a very good agreement
between both these data, so that we can regard the tail as
been understood. What remains is the movement of the
shock. But here one more look onto the fundamental diagram
gives a qualitative explanation. Two successive jumps in
headway are drawn in Fig. 14. The shock moves with veloc-

ity

(107)

(108

(109
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. q-—q(p) of the headway. This enables us to transform the headway
X=c(p)=——— (118  and the velocity consistently by using an asymptotic approxi-
p-—p . : -
mation for the headway in terms of the density. For car-
[cf. Eq. (58)] along the road where denotes the highest following models of the Bando type, including an optimal
density of the pulse. The change of the jump in headway iselocity functionV, we gave a general expression of the
given by the intersection of the asymptotic solutigii1) equivalent continuum model, even though the transformation
and the shock front allows for any model to be transformed into its continuous
counterpart. In the case of the Bando mofiE] the con-

.~ dp tinuum version obeys the same stability criterion as the dis-
p=p X c(p) (119 crete counterpart. Numerical simulations of the Bando model
predict the formation and evolution of traffic shocks. These

X 1 are well modeled by traveling waves using our continuum

(p) model provided the gradients are moderate.
(120 The transformation to the continuum model delivers a
powerful tool for traffic simulations. To calculate the travel-
ing wave solutions on a straight road the programs for the

change of the shock frohtThis system of coupled differen- Bandp moﬂel simulgtions .requ.ired_about. 4(200.0 cars,
tial equation describes the motion of the shock along thet€PSizeAt=0.005, simulation time =2000; Pentium 233

road. It is easy to see that it must turn around at a point whel!Hz) according to 2000 coupled differential equations,
whereas the solution of the ODE{§0) or (86) took just

TS 2+ RN c
(Vp)ot®  (Vp)ot

[where;) is the change of the tail andig/dx)c(p) is the

$<=c(p)=q_—q(p)=0, (121) about 5 s. In addition the continuum model allows for simple
_ _ estimations of overall traffic quantities. Some features of the
and eventually it passes by the stationary péipt autonomous cruise control systeri&CCS), whose algo-

The features of traffic flow described in this chapter canrithms for the regulation of headway are often based on dy-

be described by a simple continuum model, in which thenamic equations similar to the Bando ty{ig, may be inves-
length scale of evolution of the flow is long compared t&,1/ tigated in a continuum manner.

the relaxation required by traffic to adjust to the optimal
velocity OV. Hence, the flow is accurately modeled by as-
suming that it has the optimal velocity. ACKNOWLEDGMENTS
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